Curriculum intent

Academy curriculum Intent

Our aim at the Achieve and Learn Trust is to provide an outstanding education to all our students through a curriculum which **promotes high aspiration**; **enables academic success and excellence**; and **supports personal growth**, **preparing and equipping students for success** in all aspects of their adult life.

Our curriculum is designed to enable students to acquire and retain the core knowledge and skills that they require in each subject discipline, in order to be successful in education and transferable to later life and further learning. It is equally important that, through great teaching, the core knowledge is developed, extended upon, contextualized and applied in order to provide a richness of curriculum that engages students, consolidates learning, provides a scaffold for future advanced learning and encourages transferable skills.

Our whole school vision is to "nurture well-rounded citizens of the future who are knowledgeable, happy and resilient so that they make a valuable contribution to the world in which they live and are empowered to make informed and positive life choices."

Department Intent

"Somewhere, something incredible is waiting to be known" Carl Sagan

Students should study the sciences in ways that help them to develop curiosity about the natural world, that give them an insight into how science works and that enable them to appreciate its relevance to their everyday lives. The scope and nature of the study should be broad, coherent, practical and satisfying. It should encourage students to be inspired, motivated and challenged by the subject and its achievements.

Our aims throughout the Science journey at Altrincham College:

KS3: Students follow broad and deep curriculum that focuses on powerful knowledge and threshold concepts. We believe that mastery of threshold concepts is integral to students accessing powerful knowledge and gaining a deep understanding and appreciation of science. We aim for each child to develop a natural curiosity and passion for science through scientific enquiry and a wide range of practical and enrichment activities.

KS4: Students experience a wide range of new topics and skills at KS4 whilst following the Edexcel combined or Triple science specifications. Each topic strand is linked intrinsically to prior knowledge and skills from KS3 and builds in terms of complexity, skills and application. Our aim is that all students should leave the academy being able to understand and explain the scientific world around them and more importantly are equipped with the skills to problem solve and critically evaluate the 'big' moral questions.

KS5: The study of Science in the Sixth Form provides the opportunity to further develop a knowledge and understanding of the principles which were studied at GCSE. The curriculum is planned as a natural extension of GCSE. The promotes the development of an awareness of the wide impact that Science and Technology have on our society.

Types of knowledge

In Science, our curriculum is designed around four types of knowledge. Our curriculum is built around a mastery interleaved approach as students need to mastery key threshold concepts in science to then allow them to understand future powerful knowledge. We want students to learn about powerful knowledge and understand that all the science curriculum is powerful as it is distinct from common sense.

Substantive Knowledge

These are THE FACTS. It is the core knowledge that ALL students should know and remember.

Eg:

Naming organelles, stating scientific laws, writing word and symbol equations, drawing electron shells, stating facts.

Threshold concepts

All threshold concepts in science are powerful knowledge.

They are gateways that must be crossed in order to access certain areas of knowledge.

These threshold concepts must be mastered in order for pupils to move onto subsequent powerful knowledge.

Powerful Knowledge

Distinct from 'common sense' knowledge acquired from everyday experience and therefore context specific and limited.

It is specialised; developed by subject specialists within defined fields of expertise and enquiry.

Disciplinary Knowledge

The HOW the knowledge becomes a fact.

Part of Science where students understand each discipline as a tradition of enquiry with its own distinctive pursuit of truth.

We want students to understand how theories are developed, tested, reviewed and later accepted if based on extensive evidence.

Threshold concepts in Science

Biology	Chemistry	Physics
Cells and the cell cycle	Particle model:	Electricity:
To include the differences between	How particles behave in solids,	Current as the (rate of) flow of
animal, plant and bacterial cells and	liquids and gases. How particles	charge.
examples of specialised cells.	behave in chemical and physical	Electromagnetism:
Respiration	changes.	Current carrying wires are
All living things need to respire and	Atoms, Elements, Compounds,	surrounded by magnetic fields.
products and reactants of this	Mixtures:	Electromagnetic induction:
Photosynthesis	To include the difference between	The relative motion of a wire and a
Plants need to photosynthesise to	these and common examples.	magnet induces an emf/potential
make glucose	General Equations:	difference
Proteins	To include the law of conservation of	Energy:
To include enzymes in digestion	mass and why this means we need to	Conservation of energy; energy
and defence.	balance equations, also includes how	cannot be created or destroyed, only
DNA	to balance equations. To include the	shifted between different stores.
To include the structure of DNA,	need to learn general equations in	Motion:
inheritance, protein synthesis and	order to write equations that represent neutralisation,	Speed is the rate of change of distance, and acceleration is the rate
the importance of mutation in	combustion, oxidation, displacement	of change of speed/velocity
variation.	(KS4)	Forces:
Particle model and transport	Atomic Structure:	Forces, both contact and non-
To include how particles move	To include the location, charge and	contact, can be represented with
across membranes via osmosis,	relative mass of sub-atomic particles	arrows and the motion of an object
diffusion and active transport.	in addition to links to the periodic	depends on the resultant force acting
Homeostasis	table. Links to include the	on the object
To include how organisms maintain	relationship between electronic	The model of the atom:
constant internal conditions	structure and location on the	A nucleus of protons and neutrons,
Ecology	periodic table.	surrounded by shells of electrons
To include interactions and	Periodic Table:	Particle model:
interdependence between	To include how to locate elements in	of solids, liquids and gases
organisms	groups and periods. To include	Earth/Moon/Sun system:
	gaining an understanding of how	The Earth rotates on an axis and
	there are chemical and physical	orbits the Sun
	patterns and trends in the periodic	Light:
	table.	Visible light as a spectrum of colours
	Energy in chemical: reactions: To include the concepts of	of different wavelengths and frequencies
	exo/endothermic reactions in terms	Light travels in straight lines called
	of bond breaking and making and the	rays, which can change direction at a
	concepts of activation energy.	boundary between different media
	Opposites attract:	Sound:
	A very simple concept, but one that	produced and transmitted by
	needs revisiting due to its	vibrations
	importance in many chemistry	
	concepts, for example bonding and	
	electrolysis.	
	Mass and Moles:	
	To include the concepts of relative	
	mass, conservation of mass and using	
	moles in calculations.	
	Collision Theory	
	An important concept when	
	understanding why different factors	

can affect the rate of a reaction.

Curriculum sequencing

	Overview	Topics	Year end-points
Year 7	Students build on their KS2 Science knowledge and begin to be introduced to key threshold concepts in Science: Topics covered are:	Introduction to Science Cells Forces Energy The Particle Model Atoms and Elements Reproduction Compounds and Mixtures Acids and Bases Electricity Magnetism Common Reactions Environment Food and Digestion Sound and Light Space	Students have gained a wide range of scientific terminology covered within the initial topics. Students have shown knowledge and skill retention over time evidenced in retrieval activities. Students have performed basic practical work and have become familiar with a range of laboratory apparatus.
Year 8	Students build on substantive, disciplinary and procedural scientific knowledge from Year 7 and content is interleaved to develop mastery in the threshold concepts. Topics covered are:	Motion Energy Organ Systems Chemistry Fundamentals Purity Electricity Thermal Physics Plants and environment Unicellular Organisms Rates of reaction Light Habitats and Human Impact Gravitational forces Earth Science Metals	Students have gained a wide range of scientific terminology covered within the initial topics. Students have shown knowledge and skill retention over time evidenced in retrieval activities. Students continue to perform practical work throughout each topic and should now be able to name and use all common laboratory equipment.
Year 9	Students build on substantive, disciplinary and procedural scientific knowledge from Year 7 + 8 and content is interleaved to develop mastery in the threshold concepts. Topics covered are:	Chemistry Fundamentals Energy in reactions Chemical Reactions Genetics and variation Enzymes Newtons Laws of Motion Generating electricity Atoms and periodic table Exchange in organisms Electromagnetic waves Simple machines Ecology Nuclear Physics Separating techniques Photosynthesis Respiration Cosmology	Students have gained a wide range of scientific terminology covered within the initial topics. Students have shown knowledge and skill retention over time evidenced in retrieval activities. Students continue to perform practical work throughout each topic and should now be able to be left to conduct a full lesson practical following a method from start to finish with minimal teacher support.

Students have gained a breadth of valuable practical experiences which have given them the skills

end-point

enable them to be successful at GCSE.

Year 10 Year 11	Students build on their knowledge from KS3 following the Edexcel curriculum for each science specialism (physics, chemistry, biology). Twice per half term retrieval assessments are in place to ensure long term knowledge retention. These include the most recent taught content interleaved with previous key concepts. The dates of these assessments are not shared with the pupils. The expectation is that they are consistently reviewing their knowledge. Students also complete 8 core required practical activities per specialism which are spread across the two years. Additional practical activities are embedded throughout the curriculum to support with understanding of content.
Key Stage end- point	End Point: Students are adequately prepared for GCSE examinations and possess the relevant knowledge and practical expertise to take a science at A level if they wish
Year 12 Year 13	Students build on their knowledge from GCSE following the Edexcel or AQA curriculum for each science specialism (Physics AQA, Chemistry AQA, Biology Edexcel). Fortnightly retrieval assessments are in place to ensure long term knowledge retention. These include the most recent taught content interleaved with previous key concepts. The dates of these assessments are not shared with the pupils. The expectation is that they are consistently reviewing their knowledge. Students also complete required practical activities per specialism which are spread across the two years. Additional practical activities are embedded throughout the curriculum to support with understanding of content.
Key Stage end- point	End Point: Students are adequately prepared for A level examinations and possess the relevant knowledge, practical expertise, and independent learning skills to take a science at University if they wish.

Full long-term plans of curriculum at all Key Stages can also be found on our website.